Biomass Combustor Design

Alliance for Green Heat BNL Workshop
(Gael Ulrich 4 November 2014)

Smoke Particle Formation Fundamentals

Sophisticated Smoke (white soot)
Valuable Smoke (carbon black)

Combustion Science and Technology Applied to the Design of a Particular Biomass Combustor

Flame-Generated FineParticles

Page 22

Collisions of flame-formed particles form larger aggregates and agglomerates

Fumed silica is formed when silicon tetrachloride reacts in a hydrogen flame to form single spherical droplets of silicon dioxide. These grow through collision and coalescence to form larger droplets. As the droplets cool and begin to freeze, but continue to collide, they stick but do not coalesce, forming solid aggregates, which in turn continue to collide to form clusters known as agglomerates

Growth in size of fumed silica particles as they are carried further from the flame is shown by these four electron micrographs. All samples were taken from the same flame but at different distances from the flame front: upper left, 8 milliseconds residence time, specific surface area 360 sq meters per g; upper right, 13 milliseconds, 350 sq meters per g; lower left, 86 milliseconds, 200 sq meters per g; lower right, 137 milliseconds, 150 sq meters per g

GROWTH TIME (millizeconds)
(a) 0.5 MOLE PERCENT SiO_{2}

GROWTH TIME (milliseconds)
(c) 2.0 MOLE PERCENT SiO_{2}

(b) 1.0 MOLE PERCENT SiO_{2}

Laser technique measures growth of silice particles as they move from flame

Particles formed in as silice-producing flame scatter a laser beam as it apprese scaner a laser beam as if ap proaches and leaves the flame. The burner shown here is adjusted to produce a cone-shapes flerrie, rather than the flat flame shown in the diagram an pige 26. The aser toum entering from er right initialy is scattered slightly by
 brighter when it ancounters larper fams-generaled particles tha: have grown from the time they wers first praduced near the burner rim. As the neam approaches the cone of the flame, it is scattered by younger and younger particles and tecomes dimmer bacause these particies are smalier. Within the care, the gases have not yet reacsed, sc cep are no particles to scather the bsam. As the beam emergec through the flame toward the left, this scattering behaviar is reversed.

temperatures for some of the silica daygrogatos representiod in the gaph on the lefl.
Classical fuston theory can be used 10 derime a relatianship between pasticle diameter and residense limes. To intograte the relationshla, a boundery condition and the cooling rate must be known. ISurface tension, one parameter in the theory. is rather insensitive to lemperature, but viseosily, the othe parameter. Incteases exjenertialy as
Atemic woight unita

the partckes cool, so that the cooling rate is wital) This infrocuces same atbirrarineas ints the date fi.. Neverthe|ess. using the same values for initial particle diameter and cooling rate, the two curves in the ighthand graph were plotted using the theoretical fusion expression. The results, both theoretical and experimertal, obwicusly are highly sansitive to remperature, as these curves are for tlames that cilfer by only 4D K in termperature.

Growh tine (milisercends)
firless are mall and populous. Solics concentration and residence time are the most signifirant wariables atfectirg particle population. Temperature is :elatively unimportant until growing particies cool to the point where they no longer coalesce. Then, aocording to this idealized picture, growth ceases,
To test the model, one can study the growth of primary particles. Experiments involving titanium dioxide

darticlet in a flame, lead acreols in a shock tube, and carbon black panticles under dilute conditions in a laboratory furnace sill showed pood sgreement with the equation when a st:cking caefficient of unity was used. Even though carbon black is not precipitated cleanly by he chemical reaction, the chemistry evidently occurs apidly enough so that coagalation (of wiscous tarry dróplets or semisolid particles) controls growth in its

Fumed silica, more expensive than carbon black, has many specialty uses, including as a reinforcing agent or flow-control additive

Combustion Science and Technology Applied to the Design of a Particular Biomass Combustor

(Gael Ulrich 4 November 2014)

Three Ts of Combustion:

Time
Temperature
Turbulence

Four Cs of Consumerism:

Cost (has to be cheap)
Clean
Convenient
Compatible

United States Patent

[54] BIOMASS-FUELED FURNACE

[76] Inventor: Gael Ulich, 3 Ryan Way, Durham, N.H. 03824
[21] Appl. No.: 408,348
[22] Filed: Mar. 22, 1995
[51] Int. $\mathrm{Cl}^{6}{ }^{6}$ F23G 5/04
[52] U.S. Cl. 110/256; 110/257; 110/212; 110/302; 110/102
[58] Field of Search \qquad 110/102, 118.
110/224, 251, 254, 256, 257, 302, 304,
229. 210-212

References Cited
U.S. PATENT DOCUMENTS

3,926,582	12/1975	Powell, Jr. et al. 110/254 X
4,378,208	3/1983	Payne et al. 432/14
4,470,358	9/1984	Prochnow 110/254 X
4,543,890	10/1985	Johnson 110/102
4,616,572	10/1986	Berthiller 110/254
5,375,540	12/1994	Ve

Primary Examiner-Henry A. Bennett
Assistant Examiner-Susanne C. Tinker
Attorney, Agent, or Firm-William B. Ritchie

Oct. 21, 1997

[57]

ABSTRACT
A biomass-fueled furnace for residential or institutional space and hot water heating. Wood chips, the preferred fuel, are purchased "green and/or wet" and are stored in a dryer/storage assembly which uses waste clean exhaust gases produced by the furnace to dry them. Wood chips are fed via gravity to the primary combustion chamber where, via pyrolysis, they are burned. A thimble combustor eliminates radiant heat loss from the primary pyrolysis zone, allowing stable pyrolysis at low burning rates. A second combustion chamber fed with pre-heated air completely oxidizes pyrolysis gases. This furnace is capable of operating continuously at extremely low fuel consumption rates so that heat release can be regulated by thermostat in the same manner as conventional gas and oil fired furnaces. A combination of fuel drying plus secondary air preheating by the secondary flame allows stable operation at extremely low or "idle" fuel rates. This eliminates the need for ignition except when a new furnace is placed in service or following a maintenance shut-down. The furnace shifts from idle to active mode through an increase in primary air rate when more heat is called for. Chips flow by gravity to the primary combustor with no need for mechanical feeders or conveyors. Combustion rates and chip feed rates are regulated simply by the primary air rate. Secondary air rates are adjusted accordingly to promote clean, efficient operation.

15 Claims, 3 Drawing Sheets

Design Principles (KISS test)

1. Gravity feed of chips
2. Primary air rate controls chip feed rate.
3. Chips filter gas (minimize fly ash).
4. Primary gasification with secondary air to fine-tune combustion.
5. Preheat of secondary air ("temperature").
6. Primary air thimble promotes self-radiation.
7. "Moderate" combustion rather than stop and start.
8. Use waste heat to dry chips.
9. Gravity feed of chips
10. Primary air rate controls chip feed rate.
11. Chips filter gas (minimize fly ash).
12. Primary gasification with secondary air to fine-tune combustion.
13. Preheat of secondary air ("temperature").
14. Primary air thimble promotes self-radiation.
15. Moderate combustion rather than stop and start.
16. Use waste heat used to dry chips.

Mass Balance: grams per second (Basis: $8.0 \mathrm{~g} / \mathrm{s}$ wood chips containing 50% moisture)

Component	m.w.	$\begin{gathered} \text { Raw } \\ \text { Fuel } \\ \langle 1\rangle \end{gathered}$	$\begin{aligned} & \text { Dried } \\ & \text { Fuel } \\ & 2> \end{aligned}$	Primary Comb. Air	Secondary Comb. Air		Combustion Products 6	$\begin{aligned} & \text { Ash } \\ & \hline 7> \end{aligned}$	
C H O_{2} S Ash $\mathrm{H}_{2} \mathrm{O}$ N_{2} CO_{2} SO_{2}	$\begin{array}{r} 12 \\ 1 \\ 32 \\ 32 \\ -- \\ 18 \\ 28 \\ 44 \\ 64 \end{array}$	$\begin{aligned} & 1.76 \\ & 0.28 \\ & 1.90 \\ & 0.002 \\ & 0.06 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 1.76 \\ & 0.28 \\ & 1.90 \\ & 0.002 \\ & 0.06 \\ & 1.71 \end{aligned}$	$\begin{gathered} 3.05 \\ \\ 0.05 \\ 10.0 \end{gathered}$	$\begin{gathered} 3.05 \\ \\ 0.05 \\ 10.0 \end{gathered}$	$\begin{array}{r} 6.1 \\ 0.1 \\ 20.0 \end{array}$	$\begin{gathered} 1.0 \\ \\ 4.32 \\ 20.0 \\ 6.5 \\ 0.004 \end{gathered}$	0.06	
Total		8.0	5.7	13.1	13.1	26.2	31.8	0.06	

"Good judgment comes from experience.

Experience comes from bad judgement."

Designed using Theory. Practice revealed problem areas.

Chips are tough to feed.
Perfectly smooth tube
Diverging angle
Abandon use of waste heat to dry.
Too much extra trouble and cost.
More sophistication needed with ash removal.
Efficiency challenge—getting high CO_{2} with low "smoke."
(Temperature we have; getting time and turbulence is expensive [pressure drop and capital cost]. Decided to use another trick; subdivision.)

BERC Spreadsheet per Charles Niebling (January 2014 fuel prices)

Fuel Characterization Sheet

Fuel Type	Unit	Cost per Unit	$\begin{gathered} \text { BTU per Unit } \\ (\text { dry }) \end{gathered}$	Moisture Content	MMBtu per Unit	$\begin{gathered} \text { Cost per } \\ \text { MMBtu } \\ \text { Delivered } \end{gathered}$	Average Seasonal Efficiency	Delivered MMBTU per Unit	Cost per MMBtu After Combustion
Natural Gas	therm	\$1.30	100,000	0\%	0.100	\$13.00	85\%	0.085	\$15.29
Oil	gallon	\$3.94	138,000	0%	0.138	\$28.55	85\%	0.117	\$33.59
Propane	gallon	\$3.67	92,000	0%	0.092	\$39.89	85\%	0.078	\$46.93
Coal	ton	\$266.00	25,000,000	0%	25.0	\$10.64	75\%	18.8	\$14.19
Wood Pellets	ton (bulk delivered)	\$243.00	16,800,000	4.5\%	16.0	\$15.15	85\%	13.6	\$17.82
Wood Pellets	ton (retail bagged)	\$300.00	16,800,000	4.5\%	16.0	\$18.70	85\%	13.6	\$22.00
Cordwood	cord	\$250.00		seasoned	22.0	\$11.36	60\%	13.2	\$18.94
Wood Chips	ton	\$55.00	16,800,000	45\%	9.2	\$5.95	65\%	6.0	\$9.16

NOTES

Wood:
Northeastern hardwoods (NRBP tests, early 1990s, 8 samples around the region)
8,200
Standard assumption for wood
Alternate assumption for wood
Assumption used in this analysis
8,400
Western softwoods (northern Rockies, developed for Darby)
9,000
Efficiency Gas - 60% for atmospheric burners

- 80% for modern, sealed combustion, well-maintained commercial boilers
-85% for the best, professionally maintained industrial \& large institutional boiler
Oil - $50-70 \%$ for old, poorly-maintained, oversized equipment
75% for modern, well-maintained commercial boilers
85% for the best, professionally maintained industrial \& large institutional boiler
Wood - 65% for modern chip boilers
$50-60 \%$ for big old industrial wood boilers
50% for old wood stoves
60% for EPA certified wood stoves
75% for water storage boilers (GARN, Tarm)
-85% for sealed combustion pellet burners

Fuel Type	Unit	Cost per Unit	BTU per Unit (dry)	Moisture Content	MMBtu per Unit	Cost per MMBtu Delivered	Average Seasonal Efficiency	Delivered MMBTU per Unit	Cost per MMBtu After Combustion
Natural Gas	therm	\$1.30	100,000	0\%	0.100	\$13.00	85\%	0.085	\$15.29
Oil	gallon	\$3.94	138,000	0\%	0.138	\$28.55	85\%	0.117	\$33.59
Propane	gallon	\$3.67	92,000	0\%	0.092	\$39.89	85\%	0.078	\$46.93
Coal	ton	\$266.00	25,000,000	0\%	25.0	\$10.64	75\%	18.8	\$14.19
Wood Pellets	ton (bulk delivered)	\$243.00	16,800,000	4.5\%	16.0	\$15.15	85\%	13.6	\$17.82
Wood Pellets	ton (retail bagged)	\$265.00	16,800,000	4.5\%	16.0	\$16.52	85\%	13.6	\$19.43
Cordwood	cord	\$250.00		seasoned	22.0	\$11.36	60\%	13.2	\$18.94
Wood Chips	ton	\$55.00	16,800,000	45\%	9.2	\$5.95	65\%	6.0	\$9.16

Spreadsheet modified by Ulrich (January 2014 fuel prices)

Fuel Characterization Sheet

Fuel Type	Unit	Cost per Unit	BTU per Unit (dry)	Moisture Content	MMBtu per Unit	Cost per MMBtu Delivered	Average Seasonal Efficiency	Delivered MMBTU per Unit	Cost per MMBtu After Combustion
Natural Gas	therm	\$1.30	100,000	0\%	0.100	\$13.00	90\%	0.090	\$14.44
Oil	gallon	\$3.94	138,000	0\%	0.138	\$28.55	80\%	0.110	\$35.69
Propane	gallon	\$3.67	92,000	0\%	0.092	\$39.89	85\%	0.078	\$46.93
Coal	ton	\$266.00	25,000,000	0\%	25.0	\$10.64	75\%	18.8	\$14.19
Wood Pellets	ton (bulk delivered)	\$243.00	15,500,000	4.5\%	14.8	\$16.42	80\%	11.8	\$20.52
Wood Pellets	ton (retail bagged)	\$265.00	16,400,000	4.5\%	15.7	\$16.92	75\%	11.7	\$22.56
Pallet Shards	ton	\$80.00	16,400,000	20.0\%	13.1	\$6.10	65\%	8.5	\$9.38
Cordwood	cord	\$250.00		seasoned	22.0	\$11.36	60\%	13.2	\$18.94
Sorted Trash	ton	(\$100.00)	18,000,000	10\%	16.2	(\$6.17)	65\%	10.5	(\$9.50)
Wood Chips	ton	\$55.00	16,800,000	45\%	9.2	\$5.95	65\%	6.0	\$9.16

Ulrich Spreadsheet (November 2014 fuel prices)

Efficiency Analysis and Measurement in Biocombustors

Tools:

Thermodynamics 101: Enthalpy

1. Energy content of matter
2. Point function
3. A Property of matter
(Tell me the chemical composition, temperature and pressure, and I can give you a number.)

Chemical Engineering Approach ("Black Box")

What are \mathbf{Q} and Fuel Energy? (To answer, consider first what the temperature would be with no heat removed.)

Adiabatic Flame Temperature:
(Black box above with $\mathrm{Q}=\mathrm{O} ; \nabla \mathrm{h}=\mathrm{Q}=0$)

Enthalpy Path (I can choose any path I want [convenience, not nature])

(Adiabatic flame temperature is that corresponding to $\Delta h_{c-d}=\mathbf{6 8 , 2 0 0} \mathrm{J} / \mathrm{s}$ or $1640^{\circ} \mathrm{C}$)
Back to the question: what are \mathbf{Q} and Fuel Energy?
Q is equal to $\Delta \mathrm{h}_{\mathrm{d}-\mathrm{e}}$ (where h_{e} is defined by the exit temperature)

$$
\text { For } \mathrm{t}_{\mathrm{e}} \text { at } 100^{\circ} \mathrm{C}, \Delta \mathrm{~h}_{\mathrm{d}-\mathrm{e}}=\mathrm{Q}=68,200 \mathrm{~J} / \mathrm{s}-3000 \mathrm{~J} / \mathrm{s}=65,200 \mathrm{j} / \mathrm{s}
$$

Fuel Energy is equal to $\Delta \mathrm{h}_{\mathrm{a}-\mathrm{b}}$ (the higher heating value or heat of combustion)

$$
\text { For this case; } 4 \mathrm{~g} / \mathrm{s} \text { bone dry wood, } \Delta \mathrm{h}_{\mathrm{ab}}=(4 \mathrm{~g} / \mathrm{s})(20 \mathrm{~kJ} / \mathrm{g})=80,000 \mathrm{~J} / \mathrm{s}
$$

Efficiency:

65,200 J/s

$$
\text { Efficiency } \mathscr{E}=\underset{80,000 \mathrm{~J} / \mathrm{s}}{-------\quad \times 100=81.5 \%}
$$

(Adiabatic flame temperature is that corresponding to $\Delta h_{c-d}=\mathbf{6 8 , 2 0 0} \mathrm{J} / \mathrm{s}$ or $1640^{\circ} \mathrm{C}$)
Back to the question: what are Q and Fuel Energy?
Q is equal to $\Delta \mathrm{h}_{\mathrm{d}-\mathrm{e}}$ (where h_{e} is defined by the exit temperature)
For t_{e} at $100^{\circ} \mathrm{C}, \Delta \mathrm{h}_{\mathrm{d}-\mathrm{e}}=\mathrm{Q}=68,200 \mathrm{~J} / \mathrm{s}-3000 \mathrm{~J} / \mathrm{s}=65,200 \mathrm{j} / \mathrm{s}$
Fuel Energy is equal to Δh_{a-b} (the higher heating value or heat of combustion)
For this case; $4 \mathrm{~g} / \mathrm{s}$ bone dry wood, $\Delta \mathrm{h}_{\mathrm{a}-\mathrm{b}}=(4 \mathrm{~g} / \mathrm{s})(20 \mathrm{~kJ} / \mathrm{g})=80,000 \mathrm{~J} / \mathrm{s}$
Efficiency:

$$
\text { Efficiency } \mathscr{E}=\begin{gathered}
65,200 \mathrm{~J} / \mathrm{s} \\
--------\quad \mathrm{J} / 000 \mathrm{~J} / \mathrm{s}
\end{gathered} \times 100=81.5 \%
$$

Where do we loose efficiency?

1. Flue Gas Temperature

$$
\begin{aligned}
& A t \mathrm{t}_{\mathrm{e}}=200^{\circ} \mathrm{C}, \Delta \mathrm{~h}_{\mathrm{d}-\mathrm{e}}=\mathrm{Q}=68,200-6500=61,700 \mathrm{~J} / \mathrm{s} ; \mathscr{E}=77 \% \\
& \text { At } \mathrm{t}_{6}=300^{\circ} \mathrm{C}, \Delta \mathrm{~h}_{\mathrm{d}-\mathrm{e}}=\mathrm{Q}=68,200-11,000=57,200 \mathrm{~J} / \mathrm{s} ; \mathscr{E}=71.5 \%
\end{aligned}
$$

2. Incomplete Combustion

$$
\begin{aligned}
& \text { At } 10 \% \text { of fuel unburned, } \mathrm{t}_{\mathrm{fg}}=100^{\circ} \mathrm{C} ; \Delta \mathrm{h}_{\mathrm{d}-\mathrm{e}}=60,000 \mathrm{~J} / \mathrm{s} ; \mathrm{t}_{\mathrm{af}}=1450^{\circ} \mathrm{C} ; \\
& \qquad \mathscr{E}=(60,000 / 80,000) \times 100=75 \%
\end{aligned}
$$

3. Excessive Combustion Air

(Exhibit E-6)
At 50% excess air (150% of stoichiometric or theoretical air), $\mathrm{t}_{\mathrm{fg}}=200^{\circ} \mathrm{C} ; \Delta \mathrm{h}_{\mathrm{c}-\mathrm{d}}=68,200 ; \mathrm{t}_{\mathrm{af}}=1425^{\circ} \mathrm{C} ; \Delta \mathrm{h}_{\mathrm{d}-\mathrm{e}}=68,200-8000=60,200 \mathrm{~J} / \mathrm{s}$

$$
\mathscr{E}=60,200 / 80,000 \times 100=75 \%
$$

At 100% excess air (200% of stoichiometric or theoretical air), $\mathrm{t}_{\mathrm{fg}}=200^{\circ} \mathrm{C} ; \Delta \mathrm{h}_{\mathrm{c-d}}=68,200 ; \mathrm{t}_{\mathrm{af}}=1200^{\circ} \mathrm{C} ; \Delta \mathrm{h}_{\mathrm{d}-\mathrm{e}}=68,200-10,000=58,200 \mathrm{~J} / \mathrm{s}$;

$$
\mathscr{E}=58,200 / 80,000 \times 100=73 \%
$$

4. Excessive Moisture

Requires heat to drive off and carries with flue gases out the chimney. Also retards reaction rates/dampens combustion intensity.
What does one need to determine efficiency?
Flue gas temperature and composition (plus assurance that there is no CO or unreacted fuel or know their quantities)

Flame-Generated Fine Oxide Particles

Gael D. Ulrich is professor of chemical engineering at the University of New Hampshire, Durham. After earning bachelor's and master's degrees in chemical engineering at the University of Utah, he received his doctorate from Massachusetts Institute of Technology in 1964. Before joining the University of New Hampshire faculty in 1970, Ulrich conducted research on particle-synthesis flames in
 industry. At the university, he has consulted and continued his research on the formation and growth of oxide particles in flames. He recently completed a textbook, " A Guide to Chemical Engineering Process Design and Economics," published last January by John Wiley \& Sons.

